Volume 1
No. 1
pp. 91-99

Some V_{4}-cordial graphs

M. Seenivasan ${ }^{1}$ and A. Lourdusamy ${ }^{2 *}$
${ }^{1}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India Email: msvasan_22@yahoo.com
${ }^{2}$ Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, India. Email:lourdugnanam@hotmail.com

Abstract

For any abelian group A, a graph G is said to be A-cordial if there exists a labeling $f: V(G) \rightarrow A$ such that for every $a, b \in A$ we have (1) $\left|v_{a}-v_{b}\right| \leq 1$ and (2) $\left|e_{a}-e_{b}\right| \leq 1$, where v_{a} and e_{a} respectively denote the number of vertices and edges having particular label a. In the present work we investigate a necessary condition for an Eulerian graph to be V_{4}-cordial. In addition to this we show that all trees except P_{4} and P_{5} are V_{4}-cordial and the cycle C_{n} is V_{4}-cordial if and only if $n \neq 4$ or 5 or $n \not \equiv 2$ $(\bmod 4)$.

Keywords: Graph labeling, A-cordial, V_{4}-cordial.
(Received: 11 December 2009)

1 Introduction

Throughout this work by graph $G=(V(G), E(G))$ we mean a simple graph with p vertices and q edges. The terminology followed in this paper is according to [5]. A graph labeling is an assignment of labels to the vertices or edges, or both subject to certain conditions. For a summary on various graph labeling see the Dynamic survey of graph labeling by Gallian [4]. For any abelian group A, Hovey [1] introduced A cordial labeling. According to him a graph is called A-cordial if there exists a labeling
$f: V(G) \rightarrow A$ such that for every $a, b \in A$ we have (1) $\left|v_{a}-v_{b}\right| \leq 1$ and (2) $\left|e_{a}-e_{b}\right| \leq 1$, where v_{a} and e_{a} respectively denote the number of vertices and edges having particular label a. If $A=Z_{k}$, the labeling is called k-cordial. The k-cordial graphs were studied in $[1,2,3]$. There are only two non-isomorphic abelian groups of order four, which are Z_{4} and the Klein-four group V_{4}. In the present work we investigate a necessary condition for an Eulerian graph to be V_{4}-cordial. In addition to this we show that all trees except P_{4} and P_{5} are V_{4}-cordial and the cycle C_{n} is V_{4}-cordial if and only if $n \neq 4$ or 5 or $n \not \equiv 2(\bmod 4)$.

$2 \quad V_{4}$-cordial graphs

The Klein-four group V_{4} is the direct sum $Z_{2} \oplus Z_{2}$.

\oplus	$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$\mathbf{(1 , 0)}$	$\mathbf{(1 , 1)}$
$\mathbf{(0 , 0)}$	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\mathbf{(0 , 1)}$	$(0,1)$	$(0,0)$	$(1,1)$	$(1,0)$
$(\mathbf{1 , 0})$	$(1,0)$	$(1,1)$	$(0,0)$	$(0,1)$
$(\mathbf{1 , 1})$	$(1,1)$	$(1,0)$	$(0,1)$	$(0,0)$

For simplicity, we will denote $(0,0),(0,1),(1,0)$ and $(1,1)$ by $0, a, b, c$ respectively. That is $V_{4}=\{0, a, b, c\}$, with $a+a=b+b=c+c=0, a+b=c, b+c=a, c+a=b$, and $a+b+c=0$.

Lemma 2.1. [1] If f is an A-cordial labeling of G, so is $f+a$ for any $a \in A$.

Theorem 2.2. If G is an Eulerian graph with q edges, where $q \equiv 2(\bmod 4)$, then G has no V_{4}-cordial labeling.

Proof. Suppose there exists a V_{4}-cordial labeling, f, of an Eulerian graph G with q edges, where $q \equiv 2(\bmod 4)$. Then $q=4 m+2$ for some integer m. Let the edges e_{i} have the edge labels b_{i} in in the labeling f. Evidently $\sum_{i=1}^{q} b_{i}=m(0+a+b+c)+x+y=x+$ y, where $x, y \in\{0, a, b, c\}$ and $x \neq y$. Thus $\sum_{i=1}^{q} b_{i} \neq 0$. But $\sum_{i=1}^{q} b_{i}=d\left(v_{i}\right) f\left(v_{i}\right)=0$ as $d(v)$, the degree of the vertex v in G, is even. This contradiction proves the theorem.

Corollary 2.3. The cycle C_{n} is not V_{4}-cordial, where $n \equiv 2(\bmod 4)$, the generalized Peterson graph $P(n, k)$, where $n \equiv 2(\bmod 4)$, and $C_{m} \times C_{n}$ where m and n are odd are not V_{4}-cordial.

Theorem 2.4. Let f be a V_{4}-cordial labeling of a graph G with $p \geq 4$ and $u v$ be an edge of G such that $f(u)=0$ and $f(u) \neq f(v)$. Then the graph G^{\prime} obtained from G by replacing the edge $u v$ by a path of length five is V_{4}-cordial.

Proof. Let G^{\prime} be a graph obtained from G by replacing the edge $u v$ by a path $u w_{1} w_{2} w_{3} w_{4} v$. Suppose $f(v)=a$. Define $f_{1}: V\left(G^{\prime}\right) \rightarrow V_{4}$ by

$$
f_{1}(w)= \begin{cases}f(w), & \text { if } w \in V(G) \\ 0, & \text { if } w=w_{1} \\ a, & \text { if } w=w_{2} \\ b, & \text { if } w=w_{3} \\ c, & \text { if } w=w_{4}\end{cases}
$$

Clearly f_{1} is a V_{4}-cordial labeling of G^{\prime}. In a similar way a V_{4}-cordial labeling of G can be extended to a V_{4}-cordial labeling of G when $f(v)=b$ or c.

Theorem 2.5. Let P_{n} denote the path on n vertices. Then P_{4} and P_{5} are not V_{4}-cordial.

Proof. Let f be a V_{4}-cordial labeling of $P_{4}=v_{1} v_{2} v_{3} v_{4}$. We note that the vertices of P_{4} receive distinct labels under f. Without loss of generality we assume $f(v)=0$. Then the induced edge labels of $v_{1} v_{2}$ and $v_{3} v_{4}$ are identical. This is a contradiction. Suppose f be a V_{4}-cordial labeling of P_{5}. It is clear that the induced edge labels are distinct. Let zero be the induced edge label of the edge $u v$. Then a V_{4}-cordial labeling of P_{4} can be obtained by removing the edge $u v$ from P_{5} and identifying the vertex v with u. This is a contradiction.

Lemma 2.6. If all trees on $4 m$ vertices are V_{4}-cordial then all trees on $4 m+1,4 m+$ $2,4 m+3$ vertices are also V_{4}-cordial.

Proof. If we attach a leaf to a tree with $4 m+j$ vertices we have choices for the vertex labels that will preserve vertex V_{4}-cordiality of the tree. In order to preserve edge V_{4}-cordiality we must avoid $j-1$ edge labels if $j>0$. We can do this as long as $4-j>j-1$. If $j=0$ we have only one choice for the edge label but there is no restriction on vertex labels.

Theorem 2.7. All trees except P_{4} and P_{5} are V_{4}-cordial.

Proof. First we shall show that all trees on $p \leq 8$ vertices except P_{4} and P_{5} are $V_{4}{ }^{-}$ cordial. This is verified by the labellings given in Fig. 1.

[^0]
$P=8:$

(contd.)

Figure 1:

Now by the Lemma 2.6, we only need to show that trees with $4 m$ vertices are $V_{4^{-}}$ cordial implies trees with $4 m+4$ vertices are V_{4}-cordial when $m \geq 2$. Let T be a tree with $4 m+4$ vertices and $m \geq 2$.

Case i: T has four leaves.
Let $l_{0}, l_{1}, l_{2}, l_{3}$ be four leaves connected to $v_{0}, v_{1}, v_{2}, v_{3}$ respectively. Delete them and label the resulting tree V_{4}-cordially. Let the labels on the v_{i} be denoted a_{i}. Then we can assume, by permuting the V_{i} and by Lemma 2.1, that $\left(a_{o}, a_{1}, a_{2}, a_{3}\right)$ is one of $(0,0,0$, $0),(0,0,0, a),(0,0,0, b),(0,0,0, c),(0,0, a, a),(0,0, b, b),(0,0, c, c),(0,0, a, b)$, $(0,0, a, c),(0,0, b, c),(0, a, a, b),(0, a, a, c),(0, a, b, c)$. Suppose that edge-label j appears $m-1$ times while the other two edge-labels appear m times. We must find a way of labeling $l_{0}, l_{1}, l_{2}, l_{3}$ with distinct elements so that j appears as an edge-label and no other edge-label appears twice, though j itself might. We do this case by case. Each case is presented as an array with the top row being the a_{i}, the middle row the labels on the l_{i} and the bottom row the induced edge-labels.

0	0	0	0	0	0	0	a
0	a	b	c	j	$j+b$	$j+c$	$j+a$
0	a	b	c	j	$j+b$	$j+c$	j

0	0	0	b	0	0	0	c
j	$j+a$	$j+c$	$j+b$	j	$j+a$	$j+b$	$j+c$

$$
\begin{array}{lllllllllllll}
j & j+a & j+c & j & j & j+a & j+b & j
\end{array}
$$

$$
\begin{array}{llllllll}
0 & 0 & a & a & 0 & 0 & b & b \\
j & j+a & j+b & j+c & j+a & j+c & j+b & j
\end{array}
$$

$$
\begin{array}{llllllll}
j & j+a & j+c & j+b & j+a & j+c & j & j+b
\end{array}
$$

$$
\begin{array}{llllllll}
0 & 0 & c & c & 0 & 0 & a & b \\
j+a & j+b & j+c & j & j & j+a & j+c & j+b \\
j+a & j+b & j & j+c & j & j+a & j+b & j
\end{array}
$$

0	0	a	c
j	$j+a$	$j+b$	$j+c$
j	$j+a$	$j+c$	j

0	0	b	c

0	a	b	c
0	c	a	b
0	b	c	a

Case ii: T does not have four leaves.
If T has only two leaves then it would be a path and hence from the labellings of paths P_{n} where $n \leq 8$ and $n \neq 4$ or 5 , and by Theorem 2.4, Lemma 2.6 a V_{4}-cordial labeling can be obtained. So we can assume that T has exactly three leaves, say l_{0}, l_{1}, l_{2} connected to v_{0}, v_{1}, v_{2} respectively. Let v be the unique vertex of T with degree 3. Then at least one of the paths $v-l_{0}, v-l_{1}, v-l_{2}$ contain at least four edges. Let the path $v-l_{0}$ contain at least four edges and let v_{0}^{\prime} be the other vertex connected to v_{0}. Remove $v_{0}, l_{0}, l_{1}, l_{2}$ and label the resulting tree V_{4}-cordially. Let the labels on the vertices $v_{0}^{\prime}, v_{1}, v_{2}$ be respectively $a_{0}^{\prime}, a_{1}, a_{2}$. Then we can assume, by permuting v_{0}^{\prime}, v_{1}, v_{2} and by Lemma 2.1, that $\left(a_{0}^{\prime}, a_{1}, a_{2}\right)$ is one of $(0,0,0),(0,0, a),(0,0, b),(0,0, c),(0$,
$a, a),(0, b, b),(0, c, c),(0, a, b),(0, b, c),(0, c, a)$. Suppose that edge-label j appears $m-1$ times while the other three edge-labels appear m times. We must find a way of labeling $v_{0}, l_{0}, l_{1}, l_{2}$ with distinct elements so that j appears as an edge-label and no other edge-label appears twice, though j itself might. We do this case by case. Each case is presented as an array with the top row being the $a_{0}^{\prime}, a_{1}, a_{2}$, the middle row the labels on $v_{0}, l_{0}, l_{1}, l_{2}$ and the bottom row the induced edge-labels.

This completes the proof.

Theorem 2.8. The cycle C_{4} and C_{5} are not V_{4}-cordial.

Proof. Let $v_{1} v_{2} \cdots v_{n}$ denote the cycle C_{n}. Let f be a V_{4}-cordial labeling of C_{4}. Then the vertices of C_{4} receive distinct labels under f and induced edge labels are also distinct. To get zero as induced edge label there must be an edge with identical vertex labels at its ends, which is not possible. Suppose f be a V_{4}-cordial labeling of C_{5}. Then zero must
be an induced edge label of some edge. Without loss of generality let $f\left(v_{1}\right)=f\left(v_{2}\right)=0$. Then the edges $v_{1} v_{5}$ and $v_{3} v_{4}$ each receive the label $f\left(v_{5}\right)$ and the edges $v_{1} v_{2}$ and $v_{4} v_{5}$ each receive the label $f\left(v_{2}\right)$, which is not possible.

Theorem 2.9. The cycle C_{n} is V_{4}-cordial if and only if $n \neq 4$ or 5 or $n \not \equiv 2(\bmod 4)$.

Figure 2:

Proof. First we shall show that C_{n} is V_{4}-cordial for $n=3,7,8,9$. This is verified by the labellings given in Fig. 2.

This with Corollary 2.3, Theorem 2.4 and Theorem 2.8 completes the proof.

References

[1] M. Hovey, A-cordial graphs, Discrete Math., 93 (1991) 183-194.
[2] G. Sethuraman and P. Selvaraju, One edge union of shell graphs and one vertex union of complete bipartite graphs are cordial, Discrete Math., 259 (2002) 343-350.
[3] R. Tao, On cordiality of cycles, crowns and wheels, Systems Sci. Math.Sci., 11 (1998) 227-229.
[4] J.A. Gallian, A dynamic survey of graph labeling, The electronic journal of combinatorics, 16 (2009), \#DS6.
[5] D.B. West, An Introduction to Graph Theory, Prentice-Hall, (2002).

[^0]: (0)
 $P=1:$
 (0)-(a)
 $P=3:$
 (a)-(0)-(b)
 $P=4:$

 $P=5:$

 $P=6:$

